# THE CRYSTAL STRUCTURE OF 2-DEOXY-β-D-arabino-HEXOPYRANOSE AT -150°

HANNA MALUSZYNSKA, JOHN R. RUBLE, AND GEORGE A. JEFFREY

Department of Crystallography, University of Pittsburgh, Pittsburgh, PA 15260 (U.S.A.)

(Received May 18th, 1981; accepted for publication, June 12th, 1981)

### ABSTRACT

2-Deoxy- $\beta$ -D-arabino-hexopyranose,  $C_6H_{12}O_5$ , is orthorhombic,  $P2_12_12_1$ , with cell dimensions at  $-150^{\circ}$  [20°], a=6.484(2) [6.510(3)], b=10.364(2) [10.427(4)], c=11.134(3) [11.153(5)] Å, V=748.2 [757.1] Å<sup>3</sup>, Z=4,  $D_x=1.457$  [1.440], and  $D_m=[1.455]$  g.cm<sup>-3</sup>. The intensities of 1269 reflections were measured by using MoK $\alpha$  radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the  $^4C_1$ (D) conformation, with puckering parameters Q=0.563 Å,  $\theta=3.9^{\circ}$ , and  $\varphi=350.3^{\circ}$ . The departure from ideality is very small, and less than that in  $\beta$ -D-glucopyranose, Q=0.584 Å and  $\theta=6.9^{\circ}$ . The  $\beta$ -glycosidic, C-O bond is short, 1.383(4) Å, and the O-C-O-H torsion angle is  $-87^{\circ}$ , consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.

# **EXPERIMENTAL**

A sample of 2-deoxy-D-arabino-hexopyranose ("2-deoxy-D-glucopyranose"),  $C_6H_{12}O_5$  (CAS Reg. No. 154-17-16) from Sigma Chemical Company was recrystallized from ethanol-water solution at room temperature. The crystals were twinned, except for those which were very thin plates, one of which was selected for data collection. A crystal  $0.40 \times 0.13 \times 0.05$  mm was used with graphite-monochromated, MoK $\alpha$  radiation ( $\lambda = 0.7107$  Å) on a CAD-4 diffractometer at -150°. The unit-cell dimensions were measured at room temperature, and at -150°, from a least-squares analysis of the  $\sin^2\theta$  values of 25 reflections with  $12 < \theta < 19$ °. Of the 1296 symmetry-independent reflections measured, 729 had I >  $2\sigma(I)$ . No corrections were made for absorption ( $\mu_{MoK} = 1.37 \text{ cm}^{-1}$ ) or extinction.

The structure was solved with the direct-method program, MULTAN<sup>1</sup>, using 144 structure amplitudes with E > 1.53. All non-hydrogen atoms appeared in the E-maps, and all the hydrogen atoms were observed on subsequent, difference maps. There was no evidence of an  $\alpha, \beta$  mixture in the crystal such as is observed in crystals of 6-deoxy- $\alpha$ -L-sorbopyranose<sup>2</sup>, and, more commonly, in those of several disaccharides.

TABLE I FRACTIONAL ATOMIC COORDINATES $^a$  AND THERMAL PARAMETERS $^b$  FOR 2-deoxy- $\beta$ -d-arabino-hexo-pyranose at  $\sim$ 150 $^\circ$ 

| Atom   | x       | у       | Z       | $eta_{11}$ or $\mathrm{B}_{iso}$ | $eta_{22}$ | $eta_{33}$ | $oldsymbol{eta_{12}}$ | $eta_{13}$   | $eta_{23}$ |
|--------|---------|---------|---------|----------------------------------|------------|------------|-----------------------|--------------|------------|
| C-1    | 2226(6) | 4414(4) | 3115(3) | 74(9)                            | 28(4)      | 35(3)      | <b>—8(5)</b>          | <b>-4(4)</b> | 4(3)       |
| C-2    | 3141(6) | 3887(3) | 1956(3) | 96(9)                            | 33(4)      | 26(2)      | 3(5)                  | -18(4)       | 4(3)       |
| C-3    | 4834(6) | 2910(3) | 2223(3) | 103(9)                           | 22(3)      | 27(3)      | -2(5)                 | 0(5)         | 1(3)       |
| C-4    | 6397(6) | 3461(3) | 3101(3) | 101(10)                          | 23(3)      | 26(3)      | 3(5)                  | -16(4)       | 5(3)       |
| C-5    | 5331(5) | 4000(3) | 4219(3) | 68(8)                            | 18(3)      | 26(2)      | -1(5)                 | -4(4)        | 3(2)       |
| C-6    | 6793(6) | 4644(4) | 5090(3) | 110(10)                          | 33(4)      | 22(2)      | 12(6)                 | -3(4)        | -3(3)      |
| O-1    | 847(4)  | 5395(3) | 2850(2) | 100(7)                           | 28(3)      | 52(2)      | 10(4)                 | 6(3)         | 2(2)       |
| O-3    | 5882(5) | 2579(3) | 1126(2) | 163(8)                           | 21(3)      | 31(2)      | -4(4)                 | 20(3)        | -1(2)      |
| 0-4    | 7797(5) | 2501(3) | 3526(2) | 181(8)                           | 52(3)      | 38(2)      | 50(5)                 | -22(4)       | -14(2)     |
| O-5    | 3812(4) | 4943(2) | 3860(2) | 83(6)                            | 24(2)      | 34(2)      | 9(4)                  | 2(3)         | -6(2)      |
| O-6    | 7911(4) | 5651(3) | 4495(2) | 116(7)                           | 36(3)      | 29(2)      | -21(4)                | -1(3)        | -12(2)     |
| H-C-1  | 144     | 365     | 359     | 2.5                              |            |            |                       |              |            |
| H-C-21 | 380     | 467     | 145     | 2.5                              |            |            |                       |              |            |
| H-C-22 | 195     | 343     | 144     | 2.5                              |            |            |                       |              |            |
| H-C-3  | 414     | 205     | 260     | 2.5                              |            |            |                       |              |            |
| H-C-4  | 726     | 422     | 266     | 2.5                              |            |            |                       |              |            |
| H-C-5  | 455     | 323     | 467     | 2.5                              |            |            |                       |              |            |
| H-C-61 | 787     | 393     | 543     | 2.5                              |            |            |                       |              |            |
| H-C-62 | 592     | 505     | 583     | 2.5                              |            |            |                       |              |            |
| H-O-1  | -11(7)  | 540(5)  | 349(4)  | 4(1)                             |            |            |                       |              |            |
| H-O-3  | 590(10) | 199(6)  | 108(5)  | 7(2)                             |            |            |                       |              |            |
| H-O-4  | 825(7)  | 214(4)  | 299(3)  | 3(1)                             |            |            |                       |              |            |
| H-O-6  | 820(5)  | 605(3)  | 504(3)  | 0(8)                             |            |            |                       |              |            |

<sup>a</sup>Values are  $\times 10^4$  for non-hydrogen atoms,  $\times 10^3$  for hydrogen atoms. Estimated, standard deviations, given in parentheses, refer to the least-significant digit. <sup>b</sup>Values are  $\times 10^4$  for non-hydrogen atoms. The anisotropic-temperature expression is  $T = \exp[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})]$ . The isotropic-temperature expression is:  $T = \exp[-(B\sin^2\theta/\lambda^2)]$ .

The atomic parameters were refined by using full-matrix least-squares<sup>3</sup>, minimizing  $\Sigma \omega ||F_o| - k|F_c||^2$ , with  $\omega^{-1} = \sigma_c^2$ , where  $\sigma_c$  is from counting statistics. Anisotropic temperature-factors were used for carbon and oxygen atoms, and isotropic temperature-factors for hydrogen atoms. The methylene hydrogen-atom coordinates were fixed at calculated positions, with tetrahedral-carbon geometry and C-H = 1.08 Å. The hydroxyl hydrogen-atom positions cannot be deduced in this way, and were refined in the analysis. The standard, atomic scattering-factors were used<sup>4,5</sup>. The final agreement-factors are R = 0.058,  $R_{\omega} = 0.045$  for the 729 observed reflections\*, and S = 1.02 for all 1269 measured reflections. The atomic parameters are given in Table I. The atomic notation and thermal ellipsoids are given in Fig. 1,

<sup>\*</sup>Tables of observed and calculated structure factors have been deposited with, and can be obtained from: Elsevier Scientific Publishing Company, BBA Data Deposition, P.O. Box 1527, Amsterdam, The Netherlands. Reference should be made to No. BBA/DD/208/Carbohydr. Res., 97 (1981) 199–204.

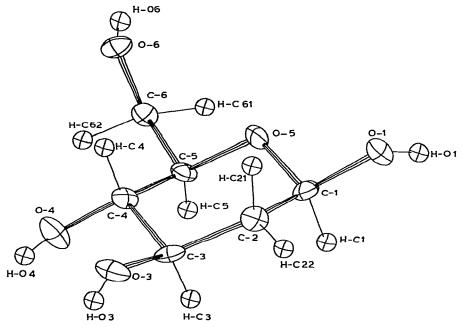



Fig. 1. 2-Deoxy- $\beta$ -D-arabino-hexopyranose at  $-150^{\circ}$ . [Atomic notation and thermal ellipsoids at 50% probability<sup>13</sup>.]

the molecular dimensions in Fig. 2, and the hydrogen-bonding scheme and geometry in Fig. 3.

## DISCUSSION

The molecule has the expected  ${}^4C_1(D)$  conformation, which is very close to ideal, with puckering parameters of Q = 0.563 Å,  $\theta = 3.9$ °, and  $\varphi = 350.3$ °. This is compared with Q = 0.549, 0.584 Å,  $\theta = 3.5$ , 6.9° for  $\alpha$ - and  $\beta$ -D-glucopyranose, respectively. (At small values of  $\theta$ , differences in  $\varphi$  are not significant  $^7$ .) The degree of ring puckering, Q, is mid-way between that of  $\alpha$ - and  $\beta$ -D-glucose. The shape of the ring is unusually symmetrical with respect to a mirror plane through C-3 and O-5. As shown in Fig. 2, the corresponding bond-lengths across the ring differ by less than 0.015 Å, and the ring torsion-angles by less than 1°. The O-1-O-4 "virtual bond" distance is 5.465 Å, which is 0.01 Å longer than in  $\beta$ -D-glucose, but very close to the Arnott-Scott<sup>8</sup> mean value of 5.468 Å. The orientation of the primary alcoholic group is gauche|gauche| with O-5-C-5-C-6-O-6 = -65°.

The stereochemistry about the  $\beta$ -anomeric carbon atom is characteristic for a  $\beta$ -pyranose molecule; C-1-O-1 = 1.386(4) Å, and the O-5-C-1-O-1 valence-angle is 107.8(3)°. The glycosidic torsion angle O-5-C-1-O-1-H is -87(3)°. This is greater than in other  $\beta$ -pyranoses, the values for which range° from -72 to -80°. This angle is very dependent on the hydrogen-bonding requirements in the crystal structure.

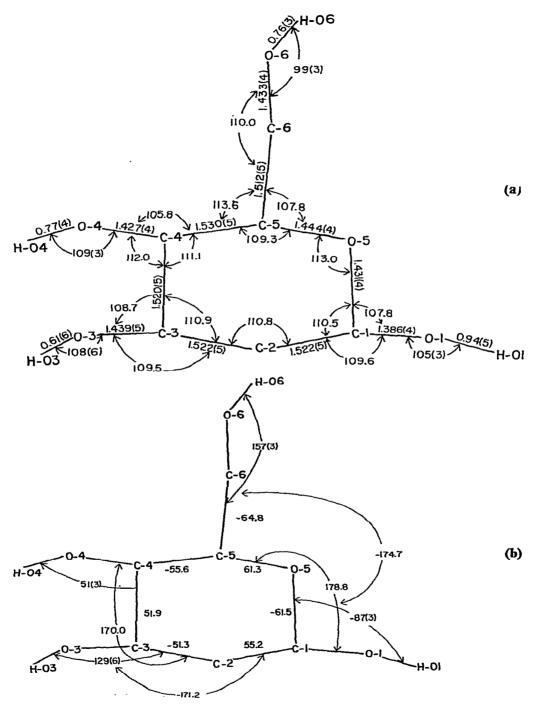



Fig. 2. (a) Bond lengths (Å) and valence angles (°) in 2-deoxy- $\beta$ -D-arabino-hexopyranose. [The standard deviations of the angles are (0.3°), except where indicated otherwise.] (b) Torsion angles (°) in 2-deoxy- $\beta$ -D-arabino-hexopyranose. [The standard deviations are (0.3-0.4°), except where indicated otherwise.]



Fig. 3. Hydrogen bonding in the crystal structure of 2-deoxy- $\beta$ -D-arabino-hexopyranose. [The values lacking standard deviations in parentheses were obtained with normalized, O-H covalent-bond distances of 0.97 Ål.

The hydrogen bonding, shown in Fig. 3, consists of infinite chains, where the weak intramolecular-component of the bifurcated bond from O-4-H is included. The ring-oxygen atom, O-5, is hydrogen-bonded through a side-chain from O-3-H. This scheme therefore includes all of the oxygen atoms in the structure, and has the maximum cooperative energy. It is consistent with the hydrogen-bonding patterns observed in other monosaccharide structures<sup>10</sup>.

Using normalized, O-H covalent bond-lengths of 0.97 Å, the O-1-H-O-6 hydrogen bond is the shortest in the crystal structure, as predicted from the charge distribution associated with the anomeric effect<sup>12</sup>. Excluding the weak intramolecular-bond, the mean H-O bond length is 1.793 Å, which is shorter than the mean value of 1.818 Å obtained from an analysis of the data from 24 neutron-diffraction crystal-structures. This is not surprising, in view of the scheme of infinite chains which includes the ring-oxygen atoms, and thereby optimizes the total, hydrogen-bonding component to the lattice energy of the crystal.

### ACKNOWLEDGMENT

This research was supported by the U.S. Public Health Service, National Institutes of Health, Grant No. GM-24526.

## REFERENCES

- 1 G. GERMAIN, P. MAIN, AND M. M. WOOLFSON, Acta Crystallogr., Sect. A, 27 (1971) 368-376.
- 2 S. T. RAO, P. SWAMINATHAN, AND M. SUNDARALINGAM, Carbohydr. Res., 89 (1971) 163-165.
- 3 W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, Technical Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1962.

- 4 D. T. CROMER AND J. T. WABER, Acta Crystallogr., 18 (1965) 104-108.
- 5 R. F. STEWART, E. R. DAVIDSON, AND W. T. SIMPSON, J. Chem. Phys., 42 (1965) 3175-3184.
- 6 D. CREMER AND J. A. POPLE, J. Am. Chem. Soc., 97 (1975) 1354-1358.
- 7 G. A. JEFFREY AND J. H. YATES, Carbohydr, Res., 74 (1979) 319-322.
- 8 S. ARNOTT AND W. E. SCOTT, J. Chem. Soc., Perkin Trans. 2, (1972) 324-335.
- 9 G. A. JEFFREY AND R. TAYLOR, J. Comput. Chem., 1 (1980) 99-109.
- 10 G. A. JEFFREY AND H. MALUSZYNSKA, Int. J. Quantum Chem., in press.
- C. CECCARELLI, G. A. JEFFREY, AND R. TAYLOR, J. Mol. Struct., 70 (1981) 255–271.
   M. D. Newton, G. A. JEFFREY, AND S. TAKAGI, J. Am. Chem. Soc., 101 (1979) 1997–2002.
- 13 C. K. JOHNSON, ORTEP II, Report ORNL-3158, Oak Ridge National Laboratory, Oak Ridge. Tennessee, 1976.